3.24 \(\int \frac{\csc (e+f x)}{\sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx\)

Optimal. Leaf size=165 \[ -\frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a \sin (e+f x)+a}}\right )}{\sqrt{a} c f (c-d) \sqrt{c+d}}+\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a}}\right )}{\sqrt{a} f (c-d)}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{a \sin (e+f x)+a}}\right )}{\sqrt{a} c f} \]

[Out]

(-2*ArcTanh[(Sqrt[a]*Cos[e + f*x])/Sqrt[a + a*Sin[e + f*x]]])/(Sqrt[a]*c*f) + (Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e
+ f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)*f) - (2*d^(3/2)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e +
 f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*c*(c - d)*Sqrt[c + d]*f)

________________________________________________________________________________________

Rubi [A]  time = 0.464996, antiderivative size = 165, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {2940, 2773, 208, 2985, 2649, 206} \[ -\frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a \sin (e+f x)+a}}\right )}{\sqrt{a} c f (c-d) \sqrt{c+d}}+\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a}}\right )}{\sqrt{a} f (c-d)}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{a \sin (e+f x)+a}}\right )}{\sqrt{a} c f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]/(Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])),x]

[Out]

(-2*ArcTanh[(Sqrt[a]*Cos[e + f*x])/Sqrt[a + a*Sin[e + f*x]]])/(Sqrt[a]*c*f) + (Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e
+ f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)*f) - (2*d^(3/2)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e +
 f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*c*(c - d)*Sqrt[c + d]*f)

Rule 2940

Int[1/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)
])), x_Symbol] :> Dist[d^2/(c*(b*c - a*d)), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] + Dist[1
/(c*(b*c - a*d)), Int[(b*c - a*d - b*d*Sin[e + f*x])/(Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\csc (e+f x)}{\sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx &=\frac{\int \frac{\csc (e+f x) (a c-a d-a d \sin (e+f x))}{\sqrt{a+a \sin (e+f x)}} \, dx}{a c (c-d)}+\frac{d^2 \int \frac{\sqrt{a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{a c (c-d)}\\ &=\frac{\int \csc (e+f x) \sqrt{a+a \sin (e+f x)} \, dx}{a c}-\frac{\int \frac{1}{\sqrt{a+a \sin (e+f x)}} \, dx}{c-d}-\frac{\left (2 d^2\right ) \operatorname{Subst}\left (\int \frac{1}{a c+a d-d x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{c (c-d) f}\\ &=-\frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a+a \sin (e+f x)}}\right )}{\sqrt{a} c (c-d) \sqrt{c+d} f}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{c f}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{(c-d) f}\\ &=-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{\sqrt{a} c f}+\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a+a \sin (e+f x)}}\right )}{\sqrt{a} (c-d) f}-\frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a+a \sin (e+f x)}}\right )}{\sqrt{a} c (c-d) \sqrt{c+d} f}\\ \end{align*}

Mathematica [C]  time = 2.15416, size = 331, normalized size = 2.01 \[ -\frac{\left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right ) \left (d^{3/2} \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right ) \left (\sqrt{c+d}-\sqrt{d} \sin \left (\frac{1}{2} (e+f x)\right )+\sqrt{d} \cos \left (\frac{1}{2} (e+f x)\right )\right )\right )-d^{3/2} \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right ) \left (\sqrt{c+d}+\sqrt{d} \sin \left (\frac{1}{2} (e+f x)\right )-\sqrt{d} \cos \left (\frac{1}{2} (e+f x)\right )\right )\right )+(2+2 i) (-1)^{3/4} c \sqrt{c+d} \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac{1}{4} (e+f x)\right )-1\right )\right )+d \sqrt{c+d} \log \left (\sin \left (\frac{1}{2} (e+f x)\right )-\cos \left (\frac{1}{2} (e+f x)\right )+1\right )+(c-d) \sqrt{c+d} \log \left (-\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )+1\right )-c \sqrt{c+d} \log \left (\sin \left (\frac{1}{2} (e+f x)\right )-\cos \left (\frac{1}{2} (e+f x)\right )+1\right )\right )}{c f (c-d) \sqrt{c+d} \sqrt{a (\sin (e+f x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]/(Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])),x]

[Out]

-((((2 + 2*I)*(-1)^(3/4)*c*Sqrt[c + d]*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e + f*x)/4])] + (c - d)*Sqrt[
c + d]*Log[1 + Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] - c*Sqrt[c + d]*Log[1 - Cos[(e + f*x)/2] + Sin[(e + f*x)/2
]] + d*Sqrt[c + d]*Log[1 - Cos[(e + f*x)/2] + Sin[(e + f*x)/2]] + d^(3/2)*Log[Sec[(e + f*x)/4]^2*(Sqrt[c + d]
+ Sqrt[d]*Cos[(e + f*x)/2] - Sqrt[d]*Sin[(e + f*x)/2])] - d^(3/2)*Log[Sec[(e + f*x)/4]^2*(Sqrt[c + d] - Sqrt[d
]*Cos[(e + f*x)/2] + Sqrt[d]*Sin[(e + f*x)/2])])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]))/(c*(c - d)*Sqrt[c + d]
*f*Sqrt[a*(1 + Sin[e + f*x])]))

________________________________________________________________________________________

Maple [A]  time = 1.433, size = 208, normalized size = 1.3 \begin{align*} -{\frac{1+\sin \left ( fx+e \right ) }{c \left ( c-d \right ) \cos \left ( fx+e \right ) f}\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) } \left ( 2\,{d}^{2}{\it Artanh} \left ({\frac{\sqrt{a-a\sin \left ( fx+e \right ) }d}{\sqrt{acd+a{d}^{2}}}} \right ){a}^{5/2}-\sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{a-a\sin \left ( fx+e \right ) }{\frac{1}{\sqrt{a}}}} \right ) c{a}^{2}\sqrt{a \left ( c+d \right ) d}+2\,{\it Artanh} \left ({\frac{\sqrt{a-a\sin \left ( fx+e \right ) }}{\sqrt{a}}} \right ){a}^{2}\sqrt{a \left ( c+d \right ) d}c-2\,{\it Artanh} \left ({\frac{\sqrt{a-a\sin \left ( fx+e \right ) }}{\sqrt{a}}} \right ){a}^{2}\sqrt{a \left ( c+d \right ) d}d \right ){a}^{-{\frac{5}{2}}}{\frac{1}{\sqrt{a \left ( c+d \right ) d}}}{\frac{1}{\sqrt{a+a\sin \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sin(f*x+e)/(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2),x)

[Out]

-(1+sin(f*x+e))*(-a*(-1+sin(f*x+e)))^(1/2)*(2*d^2*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^(5/2
)-2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*c*a^2*(a*(c+d)*d)^(1/2)+2*arctanh((a-a*sin(f*x+e
))^(1/2)/a^(1/2))*a^2*(a*(c+d)*d)^(1/2)*c-2*arctanh((a-a*sin(f*x+e))^(1/2)/a^(1/2))*a^2*(a*(c+d)*d)^(1/2)*d)/a
^(5/2)/c/(c-d)/(a*(c+d)*d)^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \sin \left (f x + e\right ) + a}{\left (d \sin \left (f x + e\right ) + c\right )} \sin \left (f x + e\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) + c)*sin(f*x + e)), x)

________________________________________________________________________________________

Fricas [B]  time = 19.9748, size = 2661, normalized size = 16.13 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(a*d*sqrt(d/(a*c + a*d))*log((d^2*cos(f*x + e)^3 - (6*c*d + 7*d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 +
4*((c*d + d^2)*cos(f*x + e)^2 - c^2 - 4*c*d - 3*d^2 - (c^2 + 3*c*d + 2*d^2)*cos(f*x + e) + (c^2 + 4*c*d + 3*d^
2 + (c*d + d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d/(a*c + a*d)) - (c^2 + 8*c*d + 9*d^
2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 + 2*(3*c*d + 4*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2
*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x +
 e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(f*x + e))) + sqrt(2)*sqrt(a)*c*log(-(cos(f*x + e)^2 - (cos
(f*x + e) - 2)*sin(f*x + e) - 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3
*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) - sqrt(a)*(c - d)*lo
g((a*cos(f*x + e)^3 - 7*a*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 + (cos(f*x + e) + 3)*sin(f*x + e) - 2*cos(f*x + e
) - 3)*sqrt(a*sin(f*x + e) + a)*sqrt(a) - 9*a*cos(f*x + e) + (a*cos(f*x + e)^2 + 8*a*cos(f*x + e) - a)*sin(f*x
 + e) - a)/(cos(f*x + e)^3 + cos(f*x + e)^2 + (cos(f*x + e)^2 - 1)*sin(f*x + e) - cos(f*x + e) - 1)))/((a*c^2
- a*c*d)*f), -1/2*(2*a*d*sqrt(-d/(a*c + a*d))*arctan(1/2*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d)*s
qrt(-d/(a*c + a*d))/(d*cos(f*x + e))) + sqrt(2)*sqrt(a)*c*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)*sin(f*x +
e) - 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f
*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) - sqrt(a)*(c - d)*log((a*cos(f*x + e)^3 - 7*a
*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 + (cos(f*x + e) + 3)*sin(f*x + e) - 2*cos(f*x + e) - 3)*sqrt(a*sin(f*x + e
) + a)*sqrt(a) - 9*a*cos(f*x + e) + (a*cos(f*x + e)^2 + 8*a*cos(f*x + e) - a)*sin(f*x + e) - a)/(cos(f*x + e)^
3 + cos(f*x + e)^2 + (cos(f*x + e)^2 - 1)*sin(f*x + e) - cos(f*x + e) - 1)))/((a*c^2 - a*c*d)*f)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(c+d*sin(f*x+e))/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError